SPARROW HAWK 62 CC MS: SEA 68 # **ASSEMBLY MANUAL** # **Specifications** | Wing span | 85.4 in | 216cm. | |----------------------------------|------------------|---------------------------| | Wing area | 1371.1 sq.in | 88.5 sq.dm. | | Approximate flying weight | 19 lbs | 8.6kg. | | Length | 71.5in | 181cm. | | Recommended engine size | | 62cc Gasoline Engine. | | Radio System required 4 channels | with 6 digital s | servos/karbonite or metal | | gear. | | | Flying skill level Intermediate/advanced. # Kit features. - Ready-made—minimal assembly & finishing required. - Ready-covered covering. - Photo-illustrated step-by-step Assembly Manual. Made in Vietnam. #### INTRODUCTION. Thank you for choosing the **SPARROW HAWK** ARTF by SG MODELS. The **SPARROWHAWK** was designed with the intermediate/advanced sport flyer in mind. It is a scale airplane which is easy to fly and quick to assemble. The airframe is conventionally built using balsa, plywood to make it stronger than the average ARTF, yet the design allows the aeroplane to be kept light. You will find that most of the work has been done for you already. The motor mount has been fitted and the hinges are pre-installed. Flying the **SPARROW HAWK** is simply a joy. This instruction manual is designed to help you build a great flying aeroplane. Please read this manual thoroughly before starting assembly of your **SPARROW HAWK**. Use the parts listing below to identify all parts. #### WARNING. Please be aware that this aeroplane is not a toy and if assembled or used incorrectly it is capable of causing injury to people or property. WHEN YOU FLY THIS AEROPLANE YOU ASSUME ALL RISK & RESPONSIBILITY. If you are inexperienced with basic R/C flight we strongly recommend you contact your R/C supplier and join your local R/C Model Flying Club. R/C Model Flying Clubs offer a variety of training procedures designed to help the new pilot on his way to successful R/C flight. They will also be able to advise on any insurance and safety regulations that may apply. | ADDITIO | ONAL ITEMS REQUIRED. | PARTS | LISTING. | |--|--|--------------------|--| | | 62cc Gasoline Engine
Radio System required 4 channels
with 6 digital servos/karbonite or
metal gear. | | LAGE ASSEMBLY (1) Fuselage ASSEMBLY | | | Propeller to suit engine Protective foam rubber for radio system fuel line | | (1) Right wing half/ aileron(1) Left wing half with/ aileron(1) Aluminium dihedral brace | | | | raii se | ction assembly | | TOOLS & SUPPLIES NEEDED. ☐ Thick cyanoacrylate glue ☐ 30 minute epoxy ☐ 5 minute epoxy ☐ Hand or electric drill | Thick cyanoacrylate glue | | (1) Horizontal stabilizer/ elevator halves. | | | | (1) Rudder halves. | | | | Assorted drill bits | Some more parts. | | | ☐ Modelling knife ☐ Straight edge ruler ☐ 2mm ball driver ☐ Phillips head screwdriver ☐ 220 grit sandpaper ☐ 90° square or builder's triangle ☐ Wire cutters ☐ Masking tape & T-pins ☐ Thread-lock ☐ Paper towels | Straight edge ruler | HARDWAREPACK | | | | Phillips head screwdriver 220 grit sandpaper 90° square or builder's triangle Wire cutters Masking tape & T-pins Thread-lock | COWL | ING
ng gear | NOTE: To avoid scratching your new aeroplane we suggest that you cover your workbench with an old towel. Keep a couple of jars or bowls handy to hold the small parts after you open the bags. > Please trial fit all parts. Make sure you have the correct parts and that they fit and are aligned properly before gluing! This will ensure proper assembly as the SPARROW HAWK is made from natural materials and minor adjustments may have to be made. The paint and plastic parts used in this kit are fuel proof. However, they are not tolerant of many harsh chemicals including the following: paint thinner, cyano-acrylate glue accelerator, cyanoacrylate glue debonder and acetone. Do not let these chemicals come in contact with the colours on the covering and the plastic parts. Note: The control surfaces, including the ailerons, elevators, and rudder, are prehinged with hinges installed, but the hinges are not glued in place. It is imperative that you properly adhere the hinges in place per the steps that follow using a high-quality thin C/A glue. - ☐ 1) Carefully remove the aileron from one of the wing panels. Note the position of the hinges. - □ 2) Remove each hinge from the wing panel and aileron and place a T-pin in the center of each hinge. Slide each hinge into the wing panel until the T-pin is snug against the wing panel. This will help ensure an equal amount of hinge is on either side of the hinge line when the aileron is mounted to the aileron. ☐ 3) Slide the wing panel on the aileron until there is only a slight gap. The hinge is now centered on the wing panel and aileron. Remove the T-pins and snug the aileron against the wing panel. A gap of 1/64" or less should be maintained between the wing panel and aileron. □ 4)Deflect the aileron and completely saturate each hinge with thin C/A glue. The ailerons front surface should lightly contact the wing during this procedure. Ideally, when the hinges are glued in place, a 1/64" gap or less will be maintained throughout the lengh of the aileron to the wing panel hinge line. Note: The hinge is constructed of a special material that allows the C/A to wick or penetrate and distribute throughout the hinge, securely bonding it to the wood structure of the wing panel and aileron. - ☐ 5) Turn the wing panel over and deflect the aileron in the opposite direction from the opposite side. Apply thin C/A glue to each hinge, making sure that the C/A penetrates into both the aileron and wing panel. - ☐ 6) Using C/A remover/debonder and a paper towel, remove any excess C/A glue that may have accumulated on the wing or in the aileron hinge area. - ☐ 7) Repeat this process with the other wing panel, securely hinging the aileron in place. - ☐ 8) After both ailerons are securely hinged, firmly grasp the wing panel and aileron to make sure the hinges are securely glued and cannot be pulled out. Do this by carefully applying medium pressure, trying to separate the aileron from the wing panel. Use caution not to crush the wing structure. Note: Work the aileron up and down several times to "work in" the hinges and check for proper movement. #### HINGING THE ELEVATOR. Glue the elevator hinges in place using the same techniques used to hinge the ailerons. #### HINGING THE RUDDER. Glue the rudder hinges in place using the same techniques used to hinge the ailerons. #### INSTALLING THE AILERON SERVOS. Because the size of servos differ, you may need to adjust the size of the precut opening in the mount. The notch in the sides of the mount allow the servo lead to pass through. Using a small weight (Weighted fuel pick-up works well) and string, feed the string through the wing as indicated. Attach the string to the servo lead and carefully thread it though the wing. Once you have string the lead throught the wing, remove the string so it can use for the other servo lead. Tape the servo lead to the wing to prevent it from falling back into the wing. Secure the servos with the screws provided with your radio system. Repeat the procedure for other wing haft. #### AILERON CONTROL HORN INSTALLATION. #### □ 1) Aileron control horn: Mix a small amount of 30 minute epoxy and lightly coat the inside of the hole in the aileron and the 3x45mm control horn screw. ☐ 2) Thread the screw (insert the washer) in to the hole from the top of surface. Wipe away any excess epoxy on the wing and screw with rubbing alcohol and a paper towel. Screw the M3 nut (insert the washer) in place as shown. Alllow the epoxy to fully cure. # AILERON PUSHROD INSTALLATION. Aileron pushrods assembly follow pictures below. Center the servo using the radio system. Repeat the procedure for other aileron. # **INSTALLING THE MAIN GEAR WIRES.** - ☐ 1) Using a modeling knife, remove the covering from over the two main gear mounting slots located in the bottom of the wing. - ☐ 2) Insert the 90° bend of one main gear wire into the predrilled hole in one mounting slot. ☐ 3) Using the two landing gear straps as a guide, mark the locations of the four 3 x 15mm mounting screws onto the wing surface. ☐ 4) Remove the two straps and the gear wire. Drill four 1.5mm pilot holes into the wing for the wood screws. ☐ 5) The landing gear wire is held in place using two nylon landing gear straps and four 3mm x 15mm wood screws. Be careful do not to drill through the top of the wing! WHEEL PANT INSTALLATION. The wheel pant assembly follow pictures below Reinstall the gear wire and install the four 3 x 15mm wood screws. Tighten the screws completely to secure the gear wire in place. #### WING ASSEMBLY. NOTE: We highly recommend using 30 minute epoxy as it is stronger and provides more working time, allowing the builder to properly align the parts. Using fast cure epoxy when joining the wing halves could result in the glue drying before the wing halves are aligned properly which may result in failure of the wing centre section during flight. ☐ 1) Test fit the Wing tube into each wing half. The brace should slide in easily up to the centreline that you drew. If not, use 220 grit sandpaper with a sanding block and sand down the edges and ends of the brace until it fits properly. ☐ 2) Remove the brace when satisfied with its fit ineach wing half. Coat the dihedral brace with 30 minute epoxy. Next, pour some epoxy into the dihedral box in one wing panel. Make sure you cover the top and bottom as well as the sides of the dihedral brace. Use enough epoxy to fill any gaps. Carefully slide the two wing halves together and firmly press them together, allowing the excess epoxy to run out. There should not be any gap in the wing halves. Use rubbing alcohol and a paper tower to clean up any excess epoxy. Apply masking tape at the wing join to hold the wing halves together securely. ☐ 3) Peel off the backing from the self adhesive covering strip. Apply the strip to the centre section of the wing starting from the bottom trailing edge. Wrap the strip all the way around the wing until it meets the trailing edge again. Trim off any excess strip. #### **ENGINE INSTALLATION.** see pictures below. Make yourself the template of your engine on paper. - ☐ 1) Line up the template with the firewall thrust line. - ☐ 2) Engine mouting holes after marking with the template. Insert the blind nuts (not inclued). #### MOUNTING THE ENGINE. ☐ 1) Install the pushrod housing through the predrilled hole in the firewall and into the servo compartment. The pushrod housing should protrude 1/4" out past the front of the firewall. Make a Z-Bend 1/4" from one end of the plain wire pushrod. - ☐ 2) Insert the 4 bolts Through the engine mount, Spacess and Washers. Insert the bolts Through the firewall and washell and lock nits. Tighten use loctite to secure. - □ 3) Attach the Z-Bend in the pushrod wire to the throttle arm on the carburetor. #### **INSTALLING THE STOPPER ASSEMBLY.** - ☐ 1) Using a modeling knife, carefully cut off the rear portion of one of the 3 nylon tubes leaving 1/2" protruding from the rear of the stopper. This will be the fuel pick up tube. - ☐ 2) Using a modeling knife, cut one length of fuel line. Connect one end of the line to the weighted fuel pick up and the other end to the nylon pick up tube. - \square 3) Carefully bend the second nylon tube up at a 45 $^{\circ}$ angle. This tube is the vent tube. Carefully use a lighter or heat gun to permenently set the angle of the vent tube. Important: When the stopper assembly is installed in the tank, the top of the vent tube should rest just below the top surface of the tank. It should not touch the top of the tank. - ☐ 4) Test fit the stopper assembly into the tank. It may be necessary to remove some of the flashing around the tank opening using a modeling knife. If flashing is present, make sure none falls into the tank. - ☐ 5) With the stopper assembly in place, the weighted pick-up should rest away from the rear of the tank and move freely inside the tank. The top of the vent tube should rest just below the top of the tank. It should not touch the top of the tank. - ☐ 6) When satisfied with the alignment of the stopper assembly tighten the 3 x 20mm machine screw until the rubber stopper expands and seals the tank opening. Do not overtighten the assembly as this could cause the tank to split. Attach the fuel and pressure pipes to the tank. The lower pipe is the 'feed' and the upper two the 'pressure and fill'. The fill pipe is the next pipe. You should mark which tube is the vent and which is the fuel pickup when you attach fuel tubing to the tubes in the stopper. Once the tank is installed inside the fuselage, it may be difficult to determine which is which. Blow through one of the lines to ensure the fuel lines have not become kinked inside the fuel tank compartment. Air should flow through easily. # THROTTLE SERVO ARM INSTALLATION. ☐ 1) Install adjustable servo connector in the servo arm. 2) Install the pushrod throttle. #### **COWLING INSTALLATION.** See pictures below. ☐ 1) Slide the fiberglass cowl over the engine and line up the back edge of the cowl with the marks you made on the fuselage then trim and cut. There are two type of muffler. We call type A and type B ☐ 2) While keeping the back edge of the cowl flush with the marks, align the front of the cowl with the crankshaft of the engine. The front of the cowl should be positioned so the crankshaft is in **nearly** the middle of the cowl opening. Use the spinner backplate as a guide. Hold the cowl firmly in place using pieces of masking tape. ☐ 3) Install the muffler and muffler extension onto the engine and make the cut out in the cowl for muffler clearance. Connect the fuel to the carburetor, muffler and fuel filler valve. Secure the cowl to fuselage using the 3x15mm screws (4). #### **INSTALLING THE FUSELAGE SERVO.** Because the size of servos differ, you may need to adjust the size of the precut opening in the mount. The notch in the sides of the mount allow the servo lead to pass through. - ☐ 1) Install the rubber grommets and brass collets onto the throttle servo. Test fit the servo into the aileron servo mount. - \square 2) Secure the servos with the screws provided with your radio system. #### INSTALLING THE SWITCH. Install the switch into the precut hole in the side of the fuselage. #### **INSTALLING FIN SET 1.** ☐ 1) Remove the covering as same as pictures shown below. ☐ 2) Sand the aluminium tube using sandpaper. This will improve the bond of the epoxy to the cardboard horizontal fin. Coat both sides of one half of the aluminium tube with 30 minute epoxy. Next, pour some epoxy into the cardboard horizontal fin. Use enough epoxy to fill any gaps. □ 3) Insert aluminium tube into the cardboard of fuselage. ☐ 4) Slide the two horizontal fin halves together and carefully align them at the possition on the fuselage. Wipe away any excess epoxy using paper towels. ELEVATOR - RUDDER CONTROL HORN INSTALLATION. ☐ 1) Install the elevator control horn using the same method as with the aileron control horns. ☐ 2) Position the elevator control horn on the both side of elevator. # RUDDER CONTROL HORN INSTALLATION. Rudder control horn: Using the same tectniques used aileron control horn. See picture below. #### **INSTALLATION FIN SET 2.** Insert the aluminium tube to fuselage. #### **ELEVATOR PUSHROD INSTALLATION.** Elevator pushrods assembly follow pictures below. Center the servo using the radio system. Repeat the procedure for other elevator. #### **RUDDER PULL - PULL CABLE SYSTEM.** See pictures below. With the radio on, check the operation of the rudder. Adjust the cables so when the rudder servo is centered, the rudder is centered as well. There will be tension on the cables. Adjustments can be made at the rudder control horn and at the servo arm. Once adjustments are made, secure the servo arm to the rudder arm servo using the screw that came with the servo. # MOUNTING THE TAIL WHEEL. See picture below. # INSTALLING THE BATTERY-RECEIVER. - ☐ 1) Plug the servo leads and the switch lead into the receiver. Plug the battery pack lead into the switch also. - ☐ 2) Wrap the receiver and battery pack in the protective foam rubber to protect them from vibration. - ☐ 3) Route the antenna in the antenna tube inside the fuselage and secure it to the bottom of fuselage using a plastic tape. See picture below. **INSTALLATION PILOT.** #### ATTACHMENT WING - FUSELAGE. Bolt the wing to fuselage. See pictures below. #### BALANCING. - 1) It is critical that your airplane be balanced correctly. Improper balance will cause your plane to lose control and crash. The center of gravity is located <u>10 cm</u> back from the leading edge of the wing, measured at the wing tip. - 2) If the nose of the plane falls, the plane is nose heavy. To correct this first move the battery pack further back in the fuselage. If this is not possible or does not correct it, stick small amounts of lead weight on the fuselage sides under the horizontal stabilizer. If the tail of the plane falls, the plane is tail heavy. To correct this, move the battery and receiver forward or if this is not possible, stick weight onto the firewall or use a brass heavy hub spinner hub. When balanced correctly, the airplane should sit level or slightly nose down when you lift it up with your fingers. #### **CONTROL THROWS.** - □1) We highly recommend setting up the **SPARROW HAWK** using the control throws listed at right. We have listed control throws for Low Rate (initial test flying/sport flying). - □2) Turn on the radio system, and with the trim tabs on the transmitter in neutral, center the control surfaces by making adjustments to the clevises or adjustable servo connectors. The servo arms should be centered also. - ☐ 3) When the elevator, rudder and aileron control surfaces are centered, use a ruler and check the amount of the control throw in each surface. The control throws should be measured at the widest point of each surface! #### **INITIAL FLYING/SPORT FLYING** Ailerons: 3/16" up 3/16" down Elevator: 5/16" up 5/16" down Rudder: 3/4" right 3/4" left ☐ 4) By moving the position of the adjustable control horn out from the control surface, you will decrease the amount of throw of that control surface. Moving the adjustable control horn toward the control surface will increase the amount of throw. #### **FLIGHT PREPARATION.** - ☐ A) Check the operation and direction of the elevator, rudder, ailerons and throttle. - ☐ B) Plug in your radio system per the manufacturer's instructions and turn everything on. - ☐ C) Check the elevator first. Pull back on the elevator stick. The elevator halves should move up. If it they do not, flip the servo reversing switch on your transmitter to change the direction. - □ D) Check the rudder. Looking from behind the airplane, move the rudder stick to the right. The rudder should move to the right. If it does not, flip the servo reversing switch on your transmitter to change the direction. - ☐ F) From behind the airplane, look at the aileron on the right wing half. Move the aileron stick to the right. The right aileron should move up and the other aileron should move down. If it does not, flip the servo reversing switch on your transmitter to change the direction. - ☐ E) Check the throttle. Moving the throttle stick forward should open the carburetor barrel. If it does not, flip the servo reversing switch on your transmitter to change the direction. #### PREFLIGHT CHECK. - □1) Completely charge your transmitter and receiver batteries before your first day of flying. - ☐2) Check every bolt and every glue joint in the SPARROW HAWK to ensure that everything is tight and well bonded. - □3) Double check the balance of the airplane. Do this with the fuel tank empty. - ☐4) Check the control surfaces. All should move in the correct direction and not bind in any way. - ☐5) If your radio transmitter is equipped with dual rate switches double check that they are on the low rate setting for your first few flights. - ☐6) Check to ensure the control surfaces are moving the proper amount for both low and high rate settings. - ☐7) Check the receiver antenna. It should be fully extended and not coiled up inside the fuselage. - ☐8) Properly balance the propeller. An out of balance propeller will cause excessive vibration which could lead to engine and/or airframe failure. <u>We wish you many safe and enjoyable</u> <u>flights with your SPARROW HAWK .</u>